Как вычитать и складывать векторы

Вектор - это математический объект, который характеризуется величиной и направлением (например, ускорение, перемещение), чем и отливается от скаляров, у которых направления нет (например, расстояние, энергия). Скаляры можно складывать, сложив их значения (например, 5 кДж работы плюс 6 кДж работы равно 11 кДж работы), а вот векторы складывать и вычитать не так просто.

Метод 1 из 3: Сложение и вычитание векторов с известными компонентами

  1. Так как векторы имеют величину и направление, то их можно разложить на компоненты, основываясь на размерностях х, у и/или z. Они, как правило, обозначаются так же, как точки в системе координат (например, <х,у,z>). Если компоненты известны, то сложить/вычесть векторы так же просто, как сложить/вычесть координаты x, y, z.
    • Обратите внимание, что векторы могут быть одномерными, двумерными или трехмерными. Таким образом, векторы могут иметь компонент «х», или компоненты «х» и «у», или компоненты «х», «у», «z». Ниже рассматриваются трехмерные векторы, но процесс аналогичен для одномерных и двумерных векторов.
    • Предположим, что вам даны два трехмерных вектора - вектор А и вектор B. Запишите эти векторы в векторной форме: А = <a1, b1, c1> и B = <a2, b2, c2>, где a1 и а2 – компоненты «х», b1 и b2 - компоненты «у», c1 и c2 - компоненты «z».
  2. Для сложения двух векторов сложите их соответствующие компоненты. Другими словами, сложите компонент «х» первого вектора с компонентом «х» второго вектора (и так далее). В результате вы получите компоненты х, у, z результирующего вектора.
    • A+B = <a1+a2,b1+b2,c1+c2>.
    • Сложим векторы A и B. A = <5, 9, -10> и B = <17, -3, -2>. A + B = <5+17, 9+-3, -10+-2>, или <22, 6, -12>.
  3. Для вычитания одного вектора из другого необходимо вычесть соответствующие компоненты. Как будет показано ниже, вычитание можно заменить сложением одного вектора и вектора, обратного другому, от другого можно рассматривать добавив его "обратная". Если компоненты двух векторов известны, вычтите соответствующие компоненты одного вектора из компонентов другого.
    • A-B = <a1-a2,b1-b2,c1-c2>
    • Вычтем векторы A и B. A = <18, 5, 3> и B = <-10, 9, -10>. A - B = <18--10, 5-9, 3--10>, or <28, -4, 13>.

Метод 2 из 3: Графическое сложение и вычитание

  1. Так как векторы имеют величину и направление, то у них есть начало и конец (начальная точка и конечная точка, расстояние между которыми равно значению вектора). При графическом отображении вектора он рисуется в виде стрелки, у которой наконечник – конец вектора, а противоположная точка – начало вектора.
    • При графическом отображении векторов стройте все углы очень точно; в противном случае вы получите неправильный ответ.
  2. Для сложения векторов нарисуйте их так, чтобы конец каждого предыдущего вектора соединялся с началом следующего вектора. Если вы складываете только два вектора, то это все, что вам нужно сделать, прежде чем найти результирующий вектор.
    • Обратите внимание, что порядок соединения векторов не важен, то есть вектор А + вектор B = вектор B + вектор А.
  3. Для вычитания вектора просто прибавьте обратный вектор, то есть измените направление вычитаемого вектора, а затем соедините его начало с концом другого вектора. Другими словами, чтобы вычесть вектор, поверните его на 180 (вокруг точки начала) и сложите его с другим вектором.
  4. Если вы складываете или вычитаете насколько (больше двух) векторов, то последовательно соедините их концы и начала. Порядок, в котором вы соединяете векторы, не имеет значения. Этот метод может быть использован для любого числа векторов.
  5. Нарисуйте новый вектор, начиная от начала первого вектора и заканчивая концом последнего вектора (при этом число складываемых векторов не важно). Вы получите результирующий вектор, равный сумме всех складываемых векторов. Обратите внимание, что этот вектор совпадает с вектором, полученным путем сложения компонентов «х», «у», «z» всех векторов.
    • Если вы нарисовали длины векторов и углы между ними очень точно, то вы можете найти значение результирующего вектора, просто измерив его длину. Кроме того, вы можете измерить угол (между результирующим вектором и другим указанным вектором или горизонтальной/вертикальной прямыми), чтобы найти направление результирующего вектора.
    • Если вы нарисовали длины векторов и углы между ними очень точно, то вы можете найти значение результирующего вектора при помощи тригонометрии, а именно теоремы синусов или теоремы косинусов. Если вы складываете несколько векторов (более двух), сначала сложите два вектора, затем сложите результирующий вектор и третий вектор и так далее. Смотрите следующий раздел для получения дополнительной информации.
  6. Представьте результирующий вектор, обозначив его значение и направление. Как отмечалось выше, если вы нарисовали длины складываемых векторов и углы между ними очень точно, то значение результирующего вектора равно его длине, а направление - это угол между ним и вертикальной или горизонтальной прямой. К значению вектора не забудьте приписать единицы измерения, в которых даны складываемые/вычитаемые вектора.
    • Например, если вы складываете векторы скорости, измеряемые в м/с, то и к значению результирующего вектора припишите «м/с», а также укажите угол результирующего вектора в формате « к горизонтальной прямой».

Метод 3 из 3: Сложения и вычитания векторов через нахождение значений их компонентов

  1. Чтобы найти значения компонентов векторов необходимо знать значения самих векторов и их направление (угол относительно горизонтальной или вертикальной прямой). Рассмотрим двумерный вектор. Сделайте его гипотенузой прямоугольного треугольника, тогда катетами (параллельными осям Х и Y) этого треугольника будут компоненты вектора. Эти компоненты можно рассматривать как соединенные два вектора, которые при сложении дают исходный вектор.
    • Длины (значения) двух компонентов (компонентов «х» и «у») исходного вектора могут быть вычислены при помощи тригонометрии. Если «х» - это значение (модуль) исходного вектора, то компонент вектора, прилежащий к углу исходного вектора, равен xcosθ, а компонент вектора, противолежащий углу исходного вектора, равен xsinθ.
    • Важно отметить направление компонентов. Если компонент направлен противоположно направлению одной из осей, то его значение будет отрицательным, например, если на двумерной плоскости координат компонент направлен влево или вниз.
    • Например, дан вектор с модулем (значением) 3 и направлением 135 (по отношению к горизонтали). Тогда компонент «х» равен 3cos 135 = -2,12, а компонент «у» равен 3sin135 = 2,12.
  2. После того, как вы нашли компоненты всех складываемых векторов, просто сложите их значения и найдете значения компонентов результирующего вектора. Сначала сложите значения всех горизонтальных компонентов (то есть компонентов, параллельных оси Х). Затем сложите значения всех вертикальных компонентов (то есть компонентов, параллельных оси Y). Если значение компонента отрицательное, то оно вычитается, а не прибавляется.
    • Например, сложим вектор <-2,12, 2,12> и вектор <5,78, -9>. Результирующий вектор будет таким <-2,12 + 5,78, 2,12-9> или <3,66, -6,88>.
  3. Вычислите длину (значение) результирующего вектора, используя теорему Пифагора: c=a+b (так как треугольник, образованный исходным вектором и его компонентами является прямоугольным). В этом случае катетами являются компоненты «х» и «у» результирующего вектора, а гипотенузой – сам результирующий вектор.
    • Чтобы найти значение результирующего вектора, компоненты <3,66, -6,88> которого вы нашли в предыдущем шаге, используйте теорему Пифагора.
      • c=(3,66)+(-6,88)
      • c=13,40+47,33
      • c=√60,73 = 7,79
  4. Чтобы найти направление результирующего вектора, используйте формулу θ=tan(b/a), где θ – угол между вектором и горизонтальной осью, b - значение компонента «у», а - значение компонента «х».
    • Найдите направление результирующего вектора из нашего примера.
      • θ=tan(-6,88/3,66)
      • θ=tan(-1,88)
      • θ=-61,99
  5. Представьте результирующий вектор, обозначив его значение и направление. К значению вектора не забудьте приписать единицы измерения, в которых даны складываемые/вычитаемые вектора.
    • Например, если в нашем примере вы складывали силу, измеряемую в Ньютонах, то ответ запишите так: 7,79 Н под углом -61,99 (к горизонтальной оси).

Советы

  • Не путайте векторы с их модулями (значениями).
  • Векторы, у которых одно направление, можно складывать или вычитать, просто сложив или отняв их значения. Если складываются два противоположно направленных вектора, то их значения вычитаются, а не складываются.
  • Векторы, которые представлены в виде xi + yj + zk можно сложить или вычесть, просто сложив или вычтя соответствующие коэффициенты. Ответ также запишите в виде i,j,k.
  • Значение вектора в трехмерном пространстве можно найти с помощью формулы a=b+c+d , где a - значение вектора, b, c, и d – компоненты вектора.
  • Векторы-столбцы можно складывать/вычитать, сложив/вычтя соответствующие значения в каждой строке.
Информация
Посетители, находящиеся в группе Guests, не могут оставлять комментарии к данной публикации.