Как решить магический квадрат

Магические квадраты обрели популярность наряду с появлением математических игр, таких как судоку. Магический квадрат — это таблица, заполненная целыми числами таким образом, чтобы сумма чисел по горизонтали, вертикали и диагонали была одинакова (так называемая магическая константа). Эта статья расскажет вам, как построить квадрат нечетного порядка, квадрат порядка одинарной четности и квадрат порядка двойной четности.

Метод 1 из 3: Квадрат нечетного порядка

  1. Вычислите магическую константу. Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 3x3 n=3, а его магическая константа:
    • Магическая константа = [3 * (32 + 1)] / 2
    • Магическая константа = [3 * (9 + 1)] / 2
    • Магическая константа = (3 * 10) / 2
    • Магическая константа = 30/2
    • Магическая константа квадрата 3х3 равна 15.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  2. Напишите 1 в центральной ячейке верхней строки. Строить любой нечетный квадрат нужно именно с этой ячейки. Например, в квадрате 3х3 напишите 1 во второй ячейке верхней строки, а в квадрате 15х15 напишите 1 в восьмой ячейке верхней строки.
  3. Следующие числа (2,3,4 и так далее по возрастанию) записывайте в ячейки по правилу: одна строка - вверх, один столбец - вправо. Но, например, чтобы записать 2, нужно "выйти" за пределы квадрата, поэтому существуют три исключения из данного правила:
    • Если вы вылезли за верхний предел квадрата, напишите цифру в самой нижней ячейке соответствующего столбца.
    • Если вы вылезли за правый предел квадрата, напишите цифру в самой дальней (левой) ячейке соответствующей строки.
    • Если вы попали на ячейку, которая занята другой цифрой, напишите цифру непосредственно под предыдущей записанной цифрой.

Метод 2 из 3: Квадрат порядка одинарной четности

  1. Существуют различные методики для построения квадратов порядка одинарной четности и двойной четности.
    • Число строк или столбцов в квадрате порядка одинарной четности делится на 2, но не на 4.
    • Наименьшим квадратом порядка одинарной четности является квадрат 6х6 (квадрат 2x2 построить нельзя).
  2. Вычислите магическую константу. Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 6x6 n=6, а его магическая константа:
    • Магическая константа = [6 * (62 + 1)] / 2
    • Магическая константа = [6 * (36 + 1)] / 2
    • Магическая константа = (6 * 37) / 2
    • Магическая константа = 222/2
    • Магическая константа квадрата 6х6 равна 111.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  3. Разделите магический квадрат на четыре квадранта одинакового размера. Обозначьте квадранты через А (сверху слева), C (сверху справа), D (снизу слева) и B (снизу справа). Чтобы выяснить размер каждого квадранта, разделите n на 2.
    • Таким образом, в квадрате 6х6 размер каждого квадранта равен 3x3.
  4. В квадранте А напишите четвертую часть всех чисел; в квадранте В напишите следующую четвертую часть всех чисел; в квадранте С напишите следующую четвертую часть всех чисел; в квадранте D напишите заключительную четвертую часть всех чисел.
    • В нашем примере квадрата 6х6 в квадранте А напишите числа 1-9; в квадранте В - числа 10-18; в квадранте С - числа 19-27; в квадранте D - числа 28-36.
  5. Числа в каждом квадранте записывайте так, как вы строили нечетный квадрат. В нашем примере квадрант А начните заполнять числами с 1, а квадранты С, B, D - с 10, 19, 28, соответственно.
    • Число, с которого вы начинаете заполнение каждого квадранта, всегда пишите в центральной ячейке верхней строки определенного квадранта.
    • Заполняйте каждый квадрант числами так, как будто это отдельный магический квадрат. Если при заполнении квадранта доступна пустая ячейка из другого квадранта, игнорируйте этот факт и пользуйтесь исключениями из правила заполнения нечетных квадратов.
  6. Выделите определенные числа в квадрантах А и D. На данном этапе сумма чисел в столбцах, строках и по диагонали не будет равна магической константе. Поэтому вы должны поменять местами числа в определенных ячейках верхнего левого и нижнего левого квадрантов.
    • Начиная с первой ячейки верхней строки квадранта А, выделите количество ячеек, равное медиане количества ячеек во всей строке. Таким образом, в квадрате 6x6 выделите только первую ячейку верхней строки квадранта А (в этой ячейке написано число 8); в квадрате 10х10 вам нужно выделить первые две ячейки верхней строки квадранта А (в этих ячейках написаны числа 17 и 24).
    • Образуйте промежуточный квадрат из выделенных ячеек. Так как в квадрате 6х6 вы выделили только одну ячейку, то промежуточный квадрат будет состоять из одной ячейки. Назовем этот промежуточный квадрат как A-1.
    • В квадрате 10х10 вы выделили две ячейки верхней строки, поэтому необходимо выделить две первые ячейки второй строки, чтобы образовать промежуточный квадрат 2х2, состоящий из четырех ячеек.
    • В следующей строке пропустите число в первой ячейке, а затем выделите столько чисел, сколько вы выделили в промежуточном квадрате A-1. Полученный промежуточный квадрат назовем A-2.
    • Получение промежуточного квадрата А-3 аналогично получению промежуточного квадрата A-1.
    • Промежуточные квадраты А-1, А-2, А-3 образуют выделенную область А.
    • Повторите описанный процесс в квадранте D: создайте промежуточные квадраты, которые образуют выделенную область D.
  7. Поменяйте местами числа из выделенных областей А и D (числа из первой строки квадранта А с числами из первой строки квадранта D и так далее). Теперь сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.

Метод 3 из 3: Квадрат порядка двойной четности

  1. Число строк или столбцов в квадрате порядка двойной четности делится на 4.
    • Наименьшим квадратом порядка двойной четности является квадрат 4х4.
  2. Вычислите магическую константу. Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 4x4 n=4, а его магическая константа:
    • Магическая константа = [4 * (42 + 1)] / 2
    • Магическая константа = [4 * (16 + 1)] / 2
    • Магическая константа = (4 * 17) / 2
    • Магическая константа = 68/2
    • Магическая константа квадрата 4х4 равна 34.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  3. Создайте промежуточные квадраты А-D. В каждом углу магического квадрата выделите промежуточный квадрат размером n/4, где n – количество строк или столбцов в магическом квадрате. Обозначьте промежуточные квадраты как A, B, C, D (в направлении против часовой стрелки).
    • В квадрате 4x4 промежуточные квадраты будут состоять из угловых ячеек (по одной в каждом промежуточном квадрате).
    • В квадрате 8х8 промежуточные квадраты будут иметь размер 2x2.
    • В квадрате 12х12 промежуточные квадраты будут иметь размер 3x3 (и так далее).
  4. Создайте центральный промежуточный квадрат. В центре магического квадрата выделите промежуточный квадрат размером n/2, где n – количество строк или столбцов в магическом квадрате. Центральный промежуточный квадрат не должен пересекаться с угловыми промежуточными квадратами, но должен касаться их углов.
    • В квадрате 4x4 центральный промежуточный квадрат имеет размер 2x2.
    • В квадрате 8x8 центральный промежуточный квадрат имеет размер 4x4 (и так далее).
  5. Начните строить магический квадрат (слева направо), но числа записывайте только в ячейки, расположенные в выделенных промежуточных квадратах. Например, квадрат 4x4 вы заполните так:
    • Напишите 1 в первой строке первом столбце; напишите 4 в первой строке четвертом столбце.
    • Напишите 6 и 7 в центре второй строки.
    • Напишите 10 и 11 в центре третьей строки.
    • Напишите 13 в четвертой строке первого столбца; напишите 16 в четвертой строке четвертого столбца.
  6. Оставшиеся ячейки квадрата заполняются аналогичным образом (слева направо), но числа нужно записывать в порядке убывания и только в ячейки, расположенные вне выделенных промежуточных квадратов. Например, квадрат 4x4 вы заполните так:
    • Напишите 15 и 14 в центре первой строки.
    • Напишите 12 во второй строке первого столбца; напишите 9 во второй строке четвертого столбца.
    • Напишите 8 в третьей строке первого столбца; напишите 5 в третьей строке четвертого столбца.
    • Напишите 3 и 2 в центре четвертой строки.
    • Теперь сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.

Советы

  • Воспользуйтесь описанными методами и найдите свой способ решения магических квадратов.

Что вам понадобится

  • Карандаш
  • Бумага
  • Ластик
Информация
Посетители, находящиеся в группе Guests, не могут оставлять комментарии к данной публикации.